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Lecture Objectives
Learn:

Applications of rotating bodies

Magnus effect

Effect of body rotation on wakes of, and forces on, cylinders and spheres 



Outline of 
Presentation • Motivation

• Non-rotating cylinder/sphere, cross-flow: 
2d/axisymmetric & 3d modes

• Rotating cylinder, no cross-flow

• Rotating cylinder/sphere in cross-flow: Varying 
rotation rate and Reynolds number  

• Applications: Flettner rotors, ball sports, wind 
turbines

• Conclusions



Many 
applications for 
FSI and non-
rotating bodies

Ocean engineering applications, such as marine risers, 
oil platforms and mooring lines
web.mit.edu/towtank/www/viv.html

Cross flow heat 
exchangers
www.real-world-physics-
problems.com/heat-exchanger.html

Tall buildings
(Imperial Tower – Mumbai)
http://gizmodo.com/how-this-116-story-
skyscraper-will-confuse-the-wind-
508206826

• Offshore marine industry
• Wind engineering
• Heat exchangers
• Aerospace
• Tethered bodies
• etc



..and for rotating
bodies

• Flettner rotors
• Wind turbines
• Sports balls
• Rolling particles
• etc

Flettner wings
www.youtube.com/watch?
v=hlmvHfIAszo

Flettner Rotor: Buckau (1924)
en.wikipedia.org/wiki/Rotor_ship

www.offshorewind.biz/2012/07/31/usa-
sandia-re-evaluates-vertical-axis-wind-
turbines/

Vertical axis wind turbines 
commons.wikimedia.org/wiki/File:Vertic
al_wind_turbine_near_US_Capitol.jpg



Non-spinning 
cylinder



Isolated cylinder 
and sphere have 
important wake 
transitions at 
moderate Re

Cylinder
• Unsteady 2s at Re = 47
• 3d mode A at Re = 180
• 3d mode B at Re = 250

Sphere
• Steady asymmetrical at 

Re= 212
• Unsteady symmetrical at 

Re = 272 (Hopf)

Battelle



Cylinder wake 
transitions

• Strouhal number and 
drag coefficient variation

• Initial transitions in low-
moderate Re range Drag coefficient and reciprocal of Strouhal number. 

Roshko (JFM, 1961)

Strouhal number vs Reynolds number 
appliedmechanicsreviews.asmedigitalcollection.asme.org



Cylinder wake 
transitions

• Strouhal number and 
drag coefficient variation

• Low Reynolds number 
transitions

Strouhal number vs Reynolds number 
Williamson  (PoF, 1988)



Cylinder: Major 
wake transitions 
as Reynolds 
number 
increases

0 < Re < 47: 
Steady 2D wake

47 < Re < 180: 
Periodic 2D vortex street

Re = 190: Subcritical 
Mode A instability 
(λd ≈ 4d)

Re = 240:  Mode B 
instability (λd≈1d) 

Re increasing: spatio-temporal 
chaos, rapid transition to 
turbulence

Persistence of mode B



Other cylinder 
wake transitions

• Shear layer instability 
Re>102

• Far wake instability –
wake relaminarises into 
double shear layer

• Drag crisis at Re ≈ 2x105

Thompson & Hourigan, PoF, 2005 

N. Saelim and D. Rockwell, private comm. (2004)



Spinning 
cylinder



Spinning 
cylinder 
generates net 
vorticity, 
starting vortex
• Spin a cylinder and 

vorticity generated 
diffuses to infinity

• Add a uniform flow and a 
starting vortex is formed

• Net lift results, similar to 
an airfoil

Impulsively spin a 
cylinder in still fluid

Add a cross flow and 
spin the cylinder



Magnus Effect –
provides lift

Lower speed
Higher pressure

Downward 
force

Fluid

www.aviation-for-kids.com/the-magnus-force.html



CFD Methods

Reynolds number Re = UD/ν
Rotation rate α = ωD/2U

Spectral Element Method
The incompressible Navier-Stokes (N-S) equations are solved in 
2-d and 3-d.
An in-house numerical solver employing a spectral element 
technique was used.
The computational domain consisted of quadrilateral 
macroelements with internal node points.
Fractional time-stepping technique was used to integrate the 
pressure, advection and diffusion terms of the N-S equation.

The Floquet multiplier (μ) 
|μ| < 1, stable
|μ| = 1, neutrally stable
|μ| > 1, unstable

μ real & positive: 3d mode and base flow synchronous (A & B)
μ complex: if base flow periodic, 2nd freq => quasi-periodic 3d flow

if base flow steady, 3d flow is periodic
μ real & negative: subharmonic mode

Stability analysis



Water Channel

Water channel set up (FLAIR)



Rotating 
Cylinder – 2 
Steady States

α = 6.15

Re = 200



Rotate Cylinder 
& Add Flow
2d States

Re = 100, α = 5¤

Re = 100, α = 3¤

Re = 100, α = 6¤
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Re = 100, α = 1¤



α= 1.90

Re=50

Re=100

Re=180

Re=250

Re=300

Re=400

Kumar et al, 
JFE, 2011

Re=200

Re=300

Re=400



Predicted lift force coefficient

-4π  Prandtl (1925)

potential flow
Cy = − 2πα

Rao et al. ) 



3d Transition 
Parameter Map

• Without rotation: modes A  
& B

• Increasing rotation adds 
many new 3d modes

• Flow becomes steady as 
α > 2, then unsteady 
again for α ≈ 4-5, then 
steady again

• Movie shows modes as α 
increases from 0 to 4, at 
Re = 275

Re = 275 



Effect of a wall 
on wake 
structure and 
transitions



α = 0
(sliding cylinder)

Mode C’ Mode C*

Mode A

Mode B



α = +1 (prograde
rolling cylinder)

Mode E

Mode C’



α = -1 
(retrograde spin 
cylinder)

Mode E

Mode A’

Mode C’’

Mode B’



SPHERES



Isolated cylinder 
and sphere have 
important wake 
transitions at 
moderate Re

Cylinder
• Unsteady 2s at Re = 47
• 3d mode A at Re = 180
• 3d mode B at Re = 250

Sphere
• Steady asymmetrical at 

Re= 212
• Unsteady symmetrical at 

Re = 272 (Hopf)

Battelle



Sphere wake 
transitions

• Strouhal number and 
drag coefficient variation

• Initial transitions in low-
moderate Re range

Strouhal number vs Reynolds number 
Sakamoto &Haniu, J. Fluids Eng 112(4), 386-392 (Dec 01, 1990)

Drag coefficient and reciprocal of Strouhal number. 
NASA



Non-Rotating 
spheres

• Johnson & Patel, JFM, 
1999. 



Non-Rotating 
spheres

• Wake at Re=300



Non-Rotating 
spheres

• Wake at Re=10,000



Rotating 
spheres

• Giacaobello et al., JFM, 
2009.



Rotating 
spheres

• Re = 500
• Variation of wake with 

increasing spin rate
• Streamwise vorticity 

plotted (𝝺2) 

Poon et al., 2015.



Rotating 
spheres

• Re = 1000
• Variation of wake with 

increasing spin rate
• Streamwise vorticity 

plotted (𝝺2)

Poon et al., 2015. 



Rotating 
spheres

• State of wake can 
change if computed for 
longer times for 𝜶 = 1 
and 1.5.

• Rajamuni et al., JFM, 
2018a

• Re = 300
• cf Giacobello et al., 2009.



Applications of 
rotating 
cylinders/spheres

• Sails

• Wings

• Sports

• Wind turbines



Flettner Rotors –
rotating round 
sails provide 
propulsion
•

http://www.youtube.com/watch?v=__8-QSXgupA

Flettner Rotor Ship 
1920

http://www.youtube.com/watch?v=2pQga7jxAyc



Flettner Rotors –
rotating round 
wings provide 
lift

http://www.youtube.com/watch?v=hlmvHfIAszo
Anton Flettner’s
Rotor Aircraft (1930)



Sports – Magnus 
effect is 
important

http://www.youtube.com/watch?feature=
player_detailpage&v=3ECoR__tJNQ

Roberto Carlos

• Many sports take 
advantage of Magnus 
Effect: tennis, golf, table 
tennis, football, baseball, 
cricket, etc

• Magnus effect on ball

• “Impossible” Goal



Wind Turbines -
Transverse Axis

• Cylinder (chimney) 
suffers FSI oscillations

• Add rotation, and larger 
oscillations over wide 
velocity range

• Rotation can cause high 
bending moments on 
blades & shaft of turbines

http://www.youtube.com/watch?v=BybfndSoIuY#t=177

http://en.wikipedia.org/wiki/Wind_turbine



Conclusions

Rotation of a cylinder in a flow:

1. Introduces many new wake transitions

2. Can suppress vortex shedding

3. Increase dramatically lift and reduce drag



Conclusions

Rotation of a sphere in a flow:

1. Alters the wake structure

2. Can suppress vortex shedding

3. Produces a net lift force

www.scienceabc.com
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Fluid-Structure 
Interaction

• Faster rotation =>

• Low (even negative!) 
drag

• High lift

• Elastically mount =>

• Larger oscillations

• Wide range of velocities

Fixed

Elastically mounted

Borguet & Lo Jacono JFM (2014) α α

CD CL


