Ph.D. Course on *Vorticity, Vortical Flows and Vortex-Induced Vibrations* Technical University of Denmark, Copenhagen, Denmark *vortex.compute.dtu.dk* August 26-30, 2019

Vehicle Aerodynamics

Kerry Hourigan

Fluids Laboratory for Aeronautical and Industrial Research Monash University, Melbourne, Australia Otto Mønsted Guest Professor, Technical University of Denmark

Lecture Objectives

Learn:

Flow forces acting on vehicles

Flow around automobiles, cars, trucks, trains

Modifications to reduce drag forces

Introduction Outline

Introduction

- History
- Motivation
- Previous Studies
- Applications to automotive vehicles

Current Research

- Automobiles
- Trains
- Cycling

Conclusions

Feature	ΔCD
Bodywork	0.050
Rearview Mirror	0.015
Rear Surfaces	0.085
Engine Bay	0.024
Cooling Drag	0.048
Underbody + Chassis	0.085
F Wheel + Suspension	0.025
R Wheel + Suspension	0.023
Total Drag Coefficient	0.355

Aerodynamic Forces on Road Automobiles

Drag, Lift and Downforce From Over Body Flow

BuildTourDurkae+Car.com

Flow Velocity/Density

Length indicates velocity Color indicates density (Green=Low \rightarrow Red=High)

BuildTourQunRaceCor.com

Area of Vacuum

www.buildyourownracecar.com

Some Controls of Aerodynamic Forces

CFD Simulations

mdx2.plm.automation.siemens.com

www.fortissimo-project.eu/experiments/417

engys.com/applications/automotive

www.prweb.com/releases/cfd/simulation/

CFD Simulations of Flow around Automobiles

www.youtube.com/watch?v=HsUp0V_HqEY

Control of Drag on Trucks

www.youtube.com/watch?v=jOG6RSjIEEs

Control of Drag on Trucks

https://www.youtube.com/watch?v=_NPNiyR5cWo

Factors in Downforce and Drag on Racing Car

From "Aeronautical Journal Jan 2013

Effect of aspect ratio of the wake structures of simplified automotive geometries

Introduction

History

- Jannsen & Hucho (1975)
- •Development of the VW Golf I
- •Two different types of flow depending on slant angle (α) of the rear window

VW Golf I (Hucho)

High Drag

Separated Wake Low Drag

Led to many studies on the effect of the slant angle of the rear window on wake structures.

Introduction Aspect Ratio Effects

- Main focus of research on the effect of slant angle (α)
- Effect of Aspect Ratio (AR) has not been seriously considered.
- AR of automotive vehicles too small to separate drag components "C_{Do} (profile drag) and C_{Di} (induced drag) do not interfere with one another, which only occurs with wings of high aspect ratio. However, because the aspect ratio is very small for vehicles, a breakdown of the flow field into 2D and 3D components is not possible." – Hucho. Previous research hasn't considered how vehicle width will effect drag.
- AR effects have been considered to have a proportional effect on drag and wake structures.
 - "As AR increases, the effect of side-edged vortices on the overall flow patterns gets progressively smaller, as only a relatively small portion of the base is exposed to them (side-edged vortices)." – Morel.

Previous Research

Ahmed, Ramm & Faltin

- Investigated the effect of α on drag and wake structures
- Low drag regime
- -Flow is attached to slant surface
- -Two streamwise vortices developing from C-pillars
- -Separation bubble on rear end base High drag regime
- -Strong streamwise vortices
- -Separation bubble on slant surface
- -Separation bubble emanating from the vertical rear end base
- Low drag regime -Wake fully separated -Absence of streamwise vortices

Previous Research

Gillieron & Chometon

Numerical simulations on the Ahmed body

2D Base Flow (0°–12°) -Flow is attached to slant surface -Two recirculation zones on the rear surface

-Two counter rotating vortices

3D Hatchback Flow (12°–30°) -3D structures on slant surface -Flow reattached on the slant surface -Two counter rotating vortices

2D Base Flow (30° -) Flow separated from top of slant surface

Slant Angle

Applications

Vehicle Geometry

Fastback How does wake structure compare to other vehicle geometries

Truncated rear end

•C-pillar vortices •flow attached to rear window •separation bubble on real surface

Vehicle Geometry

Fastback \leftrightarrow Squareback Squareback = Fastback @ α =90°

Fastback ↔ Notchback

Geometry simplified by determining characteristic angles Nozarawara et. al. (from Hucho)

Similar drag characteristic by changing β

Parameters and Simulations

Parameters

Slant Angle (α) Range: 0° – 40°

```
Aspect Ratio (AR)
(W/SL)
Range: 1.297 to 2.631
Simulations
```

V=40m/s

Re= 2.86×10^{6} Length Scale = 1.044 (L)

kω-SST Turbulence model

Ahmed Body Geometry

Grid setup

Comparison with other Experiments

Drag coefficients over predicted for α .

Same trend in C_D as α is varied.

Gilliéron results same for $\alpha = 30^{\circ}$.

Same trends as α is varied indicates that essential flow structures are captured.

Three regimes identified

Attached Low Drag Regime

Particles coloured by release position

Attached Low drag regime

- •Flow attached to slant surface.
- •Two parallel sets of flows (from top and bottom and from sides) create two counter-rotating vortex flows.
- •Above α =12°, vorticies roll up from C-pillar.

Attached Low Drag Regime

Attached Low drag regime •Vortices roll up from C-pillars •No separation bubble on centreline

Streamwise vorticity

Particles coloured by release position

High drag regime

- •Flow separates from slant surface in centre
- •Two counter rotating flow structures in separation bubble

High drag regime

- •Separation bubble visible on centerline
- •C-pillar vortices stronger
- •Vortices keep flow attached on the sides of slant surface

Streamwise vorticity

Particles coloured by release position

High drag regime

- •Flow still attached on edges of slant surfaces.
- •Larger structures in shear layer
- •Slant separation bubble feeding C- pillar vortices.

High drag regime •C-pillar vortices feeding two streamwise counter rotating vortices, causing large downwash.

Streamwise vorticity

Separated Low Drag Regime

Particles coloured by release position

Separated low drag regime

- •Flow separated from the top of the slant surface.
- •Separation bubbles from slant surface and rear end combine to form larger region behind body.

Separated Low Drag Regime

Separated low drag regime
C-pillar vortices seen at lower α not sustained due to separation bubble dominating the wake.

Streamwise vorticity

Body Forces - Drag

Drag Coefficient Vs $\boldsymbol{\alpha}$

Body Forces - Lift

Lift Coefficient Vs α

AR effects

Aspect Ratio Effects

AR=1.752 α=22°

Below AR_c

- Small separation bubble formed on slant surface.
- Downwash from vortex forming from C-pillar causing flow to attach on side of slant surface.

AR=2.270 α=22°

Above AR_C

- Wider separation bubble covering majority of slant surface.
- Vortices from C-pillar similar strength as those below AR_{C.}
- Rear separation bubble larger.

Aspect Ratio Effects

AR=1.752 α=25°

Below AR_c

- Separation bubble larger with two counter rotating vortices inside.
- Separation bubble containing toroid vortex system shorter due to net downwash from slant surface.

AR=2.270 α=25°

Above AR_C

- •Wake separated from top of slant surface.
- Slant separation bubble and rear separation merged together.
- •C-pillar vortices still present but decreased in strength.

Aspect Ratio Effects

AR=1.752 α=30°

Below AR_c

- •C-pillar vortices feeding two streamwise counter rotating vortices causing large downwash.
- •Slant separation bubble feeding Cpillar vortices.

AR=2.270 α=30°

Above AR_c

- Flow detached from the top of the slant surface.
- •Larger separation bubble at rear.
- C-pillar vortex and downstream vortices no longer present.

Conclusion

Numerical modelling captures the significant flow structures.

Beyond a critical AR (AR≈1.802) for automotive geometries, high drag wake structures are not sustained.

Important implications as it demonstrates that the vehicle AR has a critical effect on reducing drag.

AR=1.752 α =30°

AR=1.752 α=35°

Effect of Moving Ground (Shibo Wang)

Stationary Ground

Moving Ground

Shibo Wang, FLAIR

Train: Trailing vortex(Shibo Wang)

Trailing vortex behind train

Trailing vortex behind train

Effect of moving ground

Moving Ground

٠

Effect of moving ground

Moving Ground

Stationary Ground

Cycling Dynamics

Omega 3

Skin Friction

U3

Phase-averaged 100 RPM

Water Channel

Conclusions

Many types of bluff vehicles require streamlining

Wakes of vehicles important in determining drag and lift forces

Surface treatment (roughness, ribs, etc) modify skin friction and flow separation