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Lecture Objectives

Learn:

Applications of flow-induced vibrations
Vortex-induced vibration of the generic sphere
Effect of type of sphere support (spring, tether)
Effect of aspect ratio on the FIV of spheroids

Galloping for a cube



Outline of Lecture

Introduction and Motivation

Non-rotating spheroid
* Fixed
* Flexibly mounted
» FIV for different aspect ratio

Non-rotating cube
* Fixed
* Flexibly mounted
« FIV for different orientation angles

Summary and Conclusions



Introduction and Motivation

Flow-Induced Vibration (FIV) is a vibration phenomenon of
structures induced from the surrounding fluid.

- Vortex-induced vibration
- Galloping

Examples of FIV
* Bridges
* Chimney stacks
« Air craft
 Vessels

« Submarines
 Tethered structures




Introduction and Motivation contd...

- A fatigue damage or catastrophic
structural failure can occur.

* FIV is a critical consideration
for many Engineering systems.

« Limited knowledge is
available for spheroidal or
cube structures.




Why study FIV of a spheroid or cube?

1 FIV: serious cause of
structural fatigue

1 Underwater mines

1 Marine buoys

1 Floating power generation

equipment
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Sphere: Most basic 3D prototype.
Cuboid: Generic shape (with galloping?)



Galileo — falling & rolling spheres
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In 1604, Galileo’s inclined plane
experiment, where he measured the
distance a ball rolled down a ramp in
each unit of time.




Wake Transitions Fixed Sphere
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Wake Transitions Fixed Cube

Visualisations patterns of three consecutive regimes (Klotz et al., 2014).

(c,d) the two counter-rotating
vortices regime at Re = 250,

(a) Side view () Side view

(a,b) the basic flow at Re =100

(e, f)
the hairpin vortex shedding
regime at Re = 300.




FIV: NON-ROTATING SPHERE
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Literature: Does FIV occur for a sphere?

Elastically-mounted sphere Tethered

sphere Fiy
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Modes lll and IV vibration states

m*= 80

Modelll 10 :
« Observed for20< U*< 40 [ .

— Periodic vibration

— Not aVIV

— f=fFf,andf,,>>f
— Long vortical structures

ModelV
« Observed for U* > 100

— Intermittent bursts
— Not aVIV




Lower mass damping = Larger vibrations
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Sareen, A., Zhao, J., Lo Jacono, D., Sheridan, J., Hourigan, K., & Thompson, M.,
Vortex-induced vibration of a rotating sphere. Journal of Fluid Mechanics, 837, 258-
292, 2018.



Lower mass ratio m* = Larger vibrations
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Computational studies on VIV a sphere

Behara et al. (2011) and Behara and Sotiropoulos (2016)
studied VIV of a sphere with 3 DOF at Re = 300.

m Spiral vortices

m Hairpin vortices oy L &wy
P 0.25 F (D)\BB“E(\) -
: i 3N N ]
M 020 |- | S W ]
‘ - ¥ O ]
. 0.15F : =
A} 5
0.10 F T h

| E ISpiral r{lode ...I..@ ..... ]

0l _ .:Hairpin mode —=— —:
! !(E)-' Spiral mode ---3---

U*
The reduced mass m;, = 2,{ = 0, Re =
300



How current CFD solver works?

Fluid is modeled in a reference frame
attached to the centre of the sphere.

A non-deformable mesh is used.

The acceleration of the sphere appears in the
momentum equation.

The coupled system is solved using a
predictor-corrector iterative method.
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Rajamuni, M.M., Thompson, M.C. & Hourigan, K., Vortex-
induced vibration of elastically-mounted spheres: A comparison
of the response of three degrees of freedom and one degree of
freedom systems, Journal of Fluids and Structures, in press.




FIV of an elastically-mounted sphere

Branch A: Re = 300
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VIV: Tethered Sphere > 1 DOF Elastic
> 3 DOF Elastic
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3DOF: VIV Amplitude increases with Re
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FIV of Spheroids of different aspect ratios

€ U* Re frecording [HZ]
0.1 1.80-18.40 3090 - 31605 100
0.25 1.99-8.95 3438 - 15468 100
0.5 1.99-7.36 3397-12573 100
0.8 2.00-17.20 3262 - 28072 100
1.0 1.99-19.88 3208 - 32069 100

e e A4

Aspect ratio € = Horizontal diameter / Vertical diameter

Zhao, J., Hourigan, K. & Thompson, M.C., unpublished



FIV amplitude increases as spheroid becomes
thinner, then drops off
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FIV of a Cube
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(a) Side view (b) Back view

Zhao, J., Sheridan, J., Hourigan, K. & Thompson, M.C., Flow-induced
vibration of a cube orientated at different incidence angles, Journal of
Fluids and Structures, in press.



Effect on FIV of angle of attack «

a=0° o= 20° a = 45°
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a = 0°: VIV, then Galloping as U* increases
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Synchonised FIV and impingement

fl

Figure 8: Hydrogen-bubble flow visualisations demonstrating flow impingement in the two syn-
chronisation regions, compared with the negligible vibration region: (a) U*

= 3.0 (Sync-1), (b)
U* = 4.0 (non-vibration region) and (¢) U* = 10.0 (Sync-II) for « = 0°. See supplementary
movies 7 — 9.




a = 20°: VIV but desynchronised

U*=124

U*=50 U*=70
1 - 1 - 1
Y L Y 0-. y* 0 -
~1 - -1 - .
1 L I LI 1 1
0 1 2 0 1 2 J
. ~* 0
X x
04
a) -
( ° Amax
03| = Ap s
. o o o
A* : 0992909?9-000200 00 0 9 ©
02'? 09?- . g™ ._OS.OOO o o
] 02. (L L T L |
01 - e-
] 00%
; 2pQt"
0.0 4esaenSReRe " . S . .
2 4 6 8 10 12 14 16




Small FIV desynchronised.
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FIV differences between Cube and a Square

Cylinder and with a Sphere

The transverse FIV response of a cube at a = 0- is distinctly different from those
of a square cylinder and a sphere.

Cf a square cylinder:
» the oscillating cube exhibits a distinctly different manner of vortex shedding,
« where the two oppositely-signed shear layers appear to be well separated in the
wake,
» while the square cylinder displays a regular vortex shedding mode with the
shear layers strongly interacting to form a vortex street

The VIV of a sphere

» exhibits a typical amplitude jump when the body vibration frequency is close to
the vortex shedding frequency of the static body at U* = 1/St = 5.

* However, the cube exhibits an isolated lock-in region (Sync-l) at much lower
reduced velocities, despite the fact that a second lock-in region occurs for U* >
8.4 when the body vibration frequency approaches the Strouhal vortex shedding
frequency.

« From the wake measurement results, it is evident that the mechanism driving
the body vibration of a cube is different from that of a sphere: the transverse
vibration of a cube is strongly associated with the shear layers that separate
from the leading edges and impinge on the lateral sides of the body, while the
sphere vibration is due to a counter-rotating vortex pair in the wake.



Summary & Conclusions

Sphere
Fixed: Reviewed wake transitions: steady -> 3D -> unsteady hairpin
Flexibly mounted: Confirmed results of Govardhan & Williamson, effect of m*, Re

Surface trip wire: Different response depending on 2DOF or 3DOF for elastic support,
and for tethering

Spheroid

Preliminary results: Significant effect on FIV of aspect ratio

Cube

0° angle of attack: Both VIV and then Galloping observed as U* increases
Angle of attack increased (20°, 45°0): VIV becomes smaller and more desynchonised

Mechanism of FIV: Appears to be different to that for a sphere, shear layers more
strongly interact



