Ph.D. Course on *Vorticity, Vortical Flows and Vortex-Induced Vibrations* Technical University of Denmark, Copenhagen, Denmark *vortex.compute.dtu.dk* August 26-30, 2019

Fluid-Structure Interactions II: Spheres and Cubes

Kerry Hourigan

Fluids Laboratory for Aeronautical and Industrial Research Monash University, Melbourne, Australia Otto Mønsted Guest Professor, Technical University of Denmark

Reading Material

Bearman, P., Vortex shedding from oscillating bluff bodies, Annual Review of Fluid Mechanics, 16, 195-222, 1984.

Behara, S. & Sotiropoulos, F., Vortex-induced vibrations of an elastically mounted sphere: the effects of Reynolds number and reduced velocity. J. Fluids Struct. 66, 54–68, 2016.

Govardhan, R & Williamson, C., Vortex-Induced vibrations of a sphere. Journal of Fluid Mechanics, 531, 11-47, 2005.

Jauvtis, N., Govardhan, R. & Williamson, C. H. K., Multiple modes of vortex-induced vibration of a sphere. J. Fluids Struct. 15 (3–4), 555–563., 2001

Klotz, L., Goujon-Durand, S., Rokicki, J., & Wesfreid, J., Experimental investigation of flow behind a cube for moderate Reynolds numbers. *Journal of Fluid Mechanics*, 750, 73-98, 2014.

Rajamuni, M.M., Thompson, M.C. & Hourigan, K., Vortex-induced vibration of elastically-mounted spheres: A comparison of the response of three degrees of freedom and one degree of freedom systems, Journal of Fluids and Structures, in press.

Saha, A. K., Three-dimensional numerical simulations of the transition of flow past a cube, Physics of Fluids 16:5, 1630-1646, 2004.

Sareen, A., Zhao, J., Lo Jacono, D., Sheridan, J., Hourigan, K., & Thompson, M., Vortex-induced vibration of a rotating sphere. Journal of Fluid Mechanics, 837, 258-292, 2018.

Sareen, A., Zhao, J., Sheridan, J., Hourigan, K., & Thompson, M., Vortex-induced vibrations of a sphere close to a free surface. Journal of Fluid Mechanics, 846, 1023-1058, 2018.

van Hout, R., Krakovich, A. & Gottlieb, O., Time resolved measurements of vortex-induced vibrations of a tethered sphere in uniform flow. Phys. Fluids 22 (8), 087101, 2010.

Williamson, C.H.K. & Govardhan, R., Dynamics and forcing of a tethered body in a fluid flow, J. Fluids Struct., 11, 293-305, 1997.

Williamson, C.H.K. & Govardhan, R., Vortex-induced vibrations, Annu. Rev. Fluid Mech., 36, 413-55, 2004. Zhao, J., Hourigan, K. & Thompson, M.C., Dynamic response of elliptical cylinders undergoing transverse flow-induced vibration, Journal of Fluids and Structures, in press.

Learn:

Applications of flow-induced vibrations

Vortex-induced vibration of the generic sphere

Effect of type of sphere support (spring, tether)

Effect of aspect ratio on the FIV of spheroids

Galloping for a cube

Outline of Lecture

- Introduction and Motivation
- Non-rotating spheroid
 - Fixed
 - Flexibly mounted
 - FIV for different aspect ratio

Non-rotating cube

- Fixed
- Flexibly mounted
- FIV for different orientation angles
- Summary and Conclusions

Introduction and Motivation

Flow-Induced Vibration (FIV) is a vibration phenomenon of structures induced from the surrounding fluid.

- Vortex-induced vibration
- Galloping

Examples of FIV

- Bridges
- Chimney stacks
- Air craft
- Vessels
- Submarines
- Tethered structures

Introduction and Motivation contd...

- A fatigue damage or catastrophic structural failure can occur.
- FIV is a critical consideration for many Engineering systems.
- Limited knowledge is available for spheroidal or cube structures.

Why study FIV of a spheroid or cube?

- FIV: serious cause of structural fatigue
- Underwater mines
- Marine buoys
- Floating power generation equipment
- Small scale sphere-surface interactions

Sphere: Most basic 3D prototype. Cuboid: Generic shape (with galloping?)

Galileo – falling & rolling spheres

In 1604, Galileo's inclined plane experiment, where he measured the distance a ball rolled down a ramp in each unit of time.

Wake Transitions Fixed Sphere

Wake Transitions Fixed Cube

Side view

Visualisations patterns of three consecutive regimes (Klotz et al., 2014).

(a)

(c,d) the two counter-rotating vortices regime at Re = 250,

Side view

(a,b) the basic flow at Re = 100

(c)

(e, f) the hairpin vortex shedding regime at Re = 300.

FIV: NON-ROTATING SPHERE

Literature: Does FIV occur for a sphere?

- 1. Govardhan & Williamson (1997, 2005)
- 2. Williamson & Govardhan (1997)
- 3. Jauvtis et al. (2001)

Four modes of sphere vibration (modes I–IV)

Modes I & II are VIV

- Observed for $5 < U^* < 12$
- Smooth transition
- Two-sided hairpin loops

Modes III and IV vibration states

Mode III

- **Observed for** 20 < *U** < 40
 - Periodic vibration
 - Not a VIV
 - $f = f_n \text{ and } f_{vo} >> f$
 - Long vortical structures

Mode IV

- **Observed for** $U^* > 100$
 - Intermittent bursts
 - Not a VIV

Wake for mode III

Lower mass damping \Rightarrow Larger vibrations

Sareen, A., Zhao, J., Lo Jacono, D., Sheridan, J., Hourigan, K., & Thompson, M., Vortex-induced vibration of a rotating sphere. Journal of Fluid Mechanics, 837, 258–292, 2018.

Lower mass ratio $m^* \Rightarrow$ Larger vibrations

G&W: Govardhan & Williamson (2005)

Computational studies on VIV a sphere

Behara et al. (2011) and Behara and Sotiropoulos (2016) studied VIV of a sphere with 3 DOF at Re = 300.

How current CFD solver works?

- Fluid is modeled in a reference frame attached to the centre of the sphere.
- A non-deformable mesh is used.
- The acceleration of the sphere appears in the momentum equation.
- The coupled system is solved using a predictor-corrector iterative method.

Rajamuni, M.M., Thompson, M.C. & Hourigan, K., Vortexinduced vibration of elastically-mounted spheres: A comparison of the response of three degrees of freedom and one degree of freedom systems, Journal of Fluids and Structures, in press.

FIV of an elastically-mounted sphere

VIV: Tethered Sphere > 1 DOF Elastic > 3 DOF Elastic

3DOF: VIV Amplitude increases with Re

FIV of Spheroids of different aspect ratios

Aspect ratio ϵ = Horizontal diameter / Vertical diameter

Zhao, J., Hourigan, K. & Thompson, M.C., unpublished

FIV amplitude increases as spheroid becomes thinner, then drops off

Plots representing the variation between the peak value of vibrational amplitude A_{peak} in comparison to the value of A^*_{10}

FIV of a Cube

Zhao, J., Sheridan, J., Hourigan, K. & Thompson, M.C., Flow-induced vibration of a cube orientated at different incidence angles, Journal of Fluids and Structures, in press.

Effect on FIV of angle of attack α

α = 0°: VIV, then Galloping as *U*^{*} increases

Synchonised FIV and impingement

Figure 8: Hydrogen-bubble flow visualisations demonstrating flow impingement in the two synchronisation regions, compared with the negligible vibration region: (a) $U^* = 3.0$ (Sync-I), (b) $U^* = 4.0$ (non-vibration region) and (c) $U^* = 10.0$ (Sync-II) for $\alpha = 0^\circ$. See supplementary movies 7 – 9.

α = 20°: VIV but desynchronised

 U^*

α = 45°: Small FIV desynchronised.

FIV differences between Cube and a Square Cylinder and with a Sphere

- The transverse FIV response of a cube at $\alpha = 0^{\circ}$ is distinctly different from those of a square cylinder and a sphere.
- Cf a square cylinder:
- the oscillating cube exhibits a distinctly different manner of vortex shedding,
 - where the two oppositely-signed shear layers appear to be well separated in the wake,
 - while the square cylinder displays a regular vortex shedding mode with the shear layers strongly interacting to form a vortex street
- The VIV of a **sphere**
- exhibits a typical amplitude jump when the body vibration frequency is close to the vortex shedding frequency of the static body at *U** ≈ 1/St ≈ 5.
- However, the cube exhibits an isolated lock-in region (Sync-I) at much lower reduced velocities, despite the fact that a second lock-in region occurs for U* ≥ 8.4 when the body vibration frequency approaches the Strouhal vortex shedding frequency.
- From the wake measurement results, it is evident that the **mechanism** driving the body vibration of a **cube** is **different** from that of a **sphere**: the transverse vibration of a cube is strongly associated with the shear layers that separate from the leading edges and impinge on the lateral sides of the body, while the sphere vibration is due to a counter-rotating vortex pair in the wake.

Summary & Conclusions

Sphere

Fixed: Reviewed wake transitions: steady -> 3D -> unsteady hairpin

Flexibly mounted: Confirmed results of Govardhan & Williamson, effect of m*, Re

Surface trip wire: Different response depending on 2DOF or 3DOF for elastic support, and for tethering

Spheroid

Preliminary results: Significant effect on FIV of aspect ratio

Cube

0° angle of attack: Both VIV and then Galloping observed as U* increases

Angle of attack increased (20°, 45°o): VIV becomes smaller and more desynchonised

Mechanism of FIV: Appears to be different to that for a sphere, shear layers more strongly interact