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Lecture Objectives

Learn:

Applications of flow-induced vibrations

Vortex-induced vibration of the generic sphere

Effect of type of sphere support (spring, tether)

Effect of aspect ratio on the FIV of spheroids

Galloping for a cube



Outline of Lecture
• Introduction and Motivation
• Non-rotating spheroid

• Fixed 
• Flexibly mounted 
• FIV for different aspect ratio

• Non-rotating cube
• Fixed 
• Flexibly mounted 
• FIV for different orientation angles

• Summary and Conclusions



Introduction and Motivation

Flow-Induced Vibration (FIV) is a vibration phenomenon of 
structures induced from the  surrounding fluid.
- Vortex-induced vibration
- Galloping

Examples of FIV
• Bridges  
• Chimney stacks  
• Air craft  
• Vessels
• Submarines
• Tethered structures



Introduction and Motivation contd...

• A fatigue damage or catastrophic  
structural failure can occur.

• FIV is a critical consideration 
for  many Engineering systems.

• Limited knowledge is 
available for spheroidal or 
cube structures.



Why study FIV of  a spheroid or cube?
FIV: serious cause of  
structural fatigue
Underwater mines  
Marine buoys
Floating power generation  
equipment
Small scale sphere-surface 
interactions

Sphere:  Most basic 3D prototype.
Cuboid: Generic shape (with galloping?)

sub-b iosphere2



Galileo – falling & rolling spheres

In 1604, Galileo’s inclined plane 
experiment, where he measured the 
distance a ball rolled down a ramp in 
each unit of time.



Wake Transitions Fixed Sphere

Cylinder

Sphere



Wake Transitions Fixed Cube
Visualisations patterns of three consecutive regimes (Klotz et al., 2014). 
: (c,d) the two counter-rotating 

vortices regime at Re = 250, 

(a,b) the basic flow at Re = 100

(e, f ) 
the hairpin vortex shedding 
regime at Re = 300. 



FIV: NON-ROTATING SPHERE



Literature: Does FIV occur for a sphere?

m∗ = 2.8 m∗ = 0.8

U∗

Wake for mode I
U∗

Wake for mode II

Elastically-mounted sphere Tethered
sphere

1. Govardhan &
Williamson (1997, 2005)

2. Williamson &
Govardhan (1997)

3. Jauvtis et al. (2001)

Four modes of sphere  
vibration (modes I–IV)

Modes I & II are VIV
• Observed for 5< U∗ < 12
• Smooth transition
• Two-sided hairpin loops



Modes III and IV vibration states

24m∗ = 80

Wake for mode III

Mode III
• Observed for 20< U∗< 40

– Periodic vibration
– Not aVIV
– f = f n and fvo > > f
– Long vortical structures

ModeIV
• Observed forU∗> 100

– Intermittent bursts
– Not aVIV



Lower mass damping ⇒ Larger vibrations

Sareen, A., Zhao, J., Lo Jacono, D., Sheridan, J., Hourigan, K., & Thompson, M.,
Vortex-induced vibration of a rotating sphere. Journal of Fluid Mechanics, 837, 258-
292, 2018.



G&W: Govardhan & Williamson (2005) 

Lower mass ratio m* ⇒ Larger vibrations



Computational studies on VIV a sphere

Behara et al. (2011) and Behara and Sotiropoulos (2016)  
studied VIV of a sphere with 3 DOF at Re = 300.

Hairpin vortices

Spiral vortices

The reduced mass mr = 2, ζ = 0, Re =
300



How current CFD solver works?

Fluid is modeled in a reference frame  
attached to the centre of the sphere.

A non-deformable mesh is used.

The acceleration of the sphere appears in the  
momentum equation.

The coupled system is solved using a  
predictor-corrector iterative method.

Rajamuni, M.M., Thompson, M.C. & Hourigan, K., Vortex-
induced vibration of elastically-mounted spheres: A comparison 
of the response of three degrees of freedom and one degree of 
freedom systems, Journal of Fluids and Structures, in press.



FIV of an elastically-mounted sphere
Amplitude responseBranch A: R e = 3 0 0

Branch A: R e = 8 0 0

Intermittent Branch: R e = 8 0 0

Branch A

Intermittent Branch

U ∗ = 6 3 0 4 6

Frequency response



VIV: Tethered Sphere > 1 DOF Elastic 
> 3 DOF Elastic

Re = 2000

Tethered
1 DOF

3 DOF

3 DOF



3DOF: VIV Amplitude increases with Re

Rajamuni et al.



FIV of Spheroids of different aspect ratios

Zhao, J., Hourigan, K. & Thompson, M.C., unpublished

Aspect ratio ϵ = Horizontal diameter / Vertical diameter



FIV amplitude increases as spheroid becomes 
thinner, then drops off

Plots representing the variation between the peak value of vibrational amplitude 
Apeak in comparison to the value of A*10

ϵ = 1.0 ϵ = 0.8 

ϵ = 0.5 

ϵ = 0.1

ϵ = 0.3 



FIV of a Cube

Zhao, J., Sheridan, J., Hourigan, K. & Thompson, M.C., Flow-induced
vibration of a cube orientated at different incidence angles, Journal of
Fluids and Structures, in press.



Effect on FIV of angle of attack 𝛂

𝛂 = 0o 𝛂 = 20o 𝛂 = 45o

U* = 1.4 U* = 4 U* = 5 U* = 5 U* = 7 U* = 12 U* = 14U* = 6U* = 3



𝛂 = 0o: VIV, then Galloping as U* increases



Synchonised FIV and impingement



𝛂 = 20o: VIV but desynchronised



𝛂 = 45o: Small FIV desynchronised. 



FIV differences between Cube and a Square 
Cylinder and with a Sphere

The transverse FIV response of a cube at 𝛼 = 0◦ is distinctly different from those 
of a square cylinder and a sphere.
Cf a square cylinder: 
• the oscillating cube exhibits a distinctly different manner of vortex shedding, 

• where the two oppositely-signed shear layers appear to be well separated in the 
wake, 

• while the square cylinder displays a regular vortex shedding mode with the 
shear layers strongly interacting to form a vortex street 

The VIV of a sphere
• exhibits a typical amplitude jump when the body vibration frequency is close to 

the vortex shedding frequency of the static body at 𝑈∗ ≈ 1⁄St ≈ 5. 
• However, the cube exhibits an isolated lock-in region (Sync-I) at much lower 

reduced velocities, despite the fact that a second lock-in region occurs for 𝑈∗ ⩾
8.4 when the body vibration frequency approaches the Strouhal vortex shedding 
frequency. 

• From the wake measurement results, it is evident that the mechanism driving 
the body vibration of a cube is different from that of a sphere: the transverse 
vibration of a cube is strongly associated with the shear layers that separate 
from the leading edges and impinge on the lateral sides of the body, while the 
sphere vibration is due to a counter-rotating vortex pair in the wake.



Summary & Conclusions
Sphere

Fixed: Reviewed wake transitions: steady -> 3D -> unsteady hairpin

Flexibly mounted: Confirmed results of Govardhan & Williamson, effect of m*, Re

Surface trip wire: Different response depending on 2DOF or 3DOF for elastic support, 
and for tethering

Spheroid
Preliminary results: Significant effect on FIV of aspect ratio

Cube
0o angle of attack: Both VIV and then Galloping observed as U* increases

Angle of attack increased (20o, 45oo): VIV becomes smaller and more desynchonised

Mechanism of FIV: Appears to be different to that for a sphere, shear layers more 
strongly interact


