Ph.D. Course on *Vorticity, Vortical Flows and Vortex-Induced Vibrations* Technical University of Denmark, Copenhagen, Denmark *vortex.compute.dtu.dk* August 26-30, 2019

Fluid-Structure Interactions III: Controls

Kerry Hourigan

Fluids Laboratory for Aeronautical and Industrial Research Monash University, Melbourne, Australia Otto Mønsted Guest Professor, Technical University of Denmark

Reading Material

Bai, Y., Bai, Q. (ed.) (2005) Subsea Pipelines and Risers: Vortex-induced Vibrations (VIV) and Fatigue. Elsevier
Mittal, S. 2001 Control of flow past bluff bodies using rotating control cylinders. J. Fluids Struct. 15 (2), 291–326.
Paidoussis, M.P., Price, S.J. & de Langre, E., Fluid-Structure Interactions: Cross-Flow-Induced Instabilities, Cambridge University Press, 2011.

Williamson, C.H.K. & Govardhan, R., Vortex-induced vibrations, Annu. Rev. Fluid Mech., 36, 413-55, 2004.

Learn:

Surface modifications of cylinders to control FIV

Effect of various passive "controls" or "modifications" on the FIV of spheres

Outline of Presentation

- Introduction and Motivation
- Non-rotating sphere
 - Surface trip wire
 - Near a free surface

Rotating sphere

- Constant rotation
- Oscillatory rotation
- Rolling on a wall

Summary and Conclusions

Research questions

- 1 How does the FIV of an elastically-mounted/tethered sphere in the laminar regime differ from the experimental studies in turbulent regime?
- 2 How does the proximity of a free surface affect the FIV of a sphere?
- **3** Does a sphere undergo FIV when rolling on a solid surface?
- 4 What is the effect of an imposed continuous or rotary transverse rotation effect on the dynamics of VIV of a sphere?
- 5 What controls are there for the FIV of a sphere?

Modifying Flow-Induced Vibrations.

VIV controls for 2D bodies

Harris, C. M., Piersol, A.G. (ed.) (2002) Harris' Shock and Vibration Handbook (5th edition). McGraw-Hill.

SURFACE TRIP WIRE

.

Flow visualization for sphere with ring trip

Effect of angular location of trip (k/d=1.25%)

Effect of height of trip at 60°

SPHERE VIV NEAR FREE SURFACE

Water channel facilities

Recirculating free-surface water channel Test section ($W \times D \times L$): 0.6 m \times 0.8 m \times 4.0 m Free-stream velocity range: 0.04 ms⁻¹ $\leq U \leq$ 0.45 ms⁻¹ Turbulence levels \leq 1%

Sphere undergoing FIV (FLAIR water channel)

Range of VIV decreases as sphere is located closer to free surface

VIV increases as sphere is raised from just fully immersed to 3/8 immersed

(a) Regime I: $0 < h^* < -0.5$ h^* : -0.062 *h**=0 * : -0.125 h^* : -0.250 0.8 h^* : -0.375 0.6 A^*_{rms} 0.4 $h^* = -0.375$ 0.2 ∇ 0 10 515200

 U^*

VIV decreases as sphere is raised from 1/2 to 1/4 immersed

(b) Regime II: $-0.5 \le h^* \le -0.75$

 U^*

ROTATING SPHERE

Magnus Effect

Rigidly mounted sphere: Effect of increasing rotation

FIV: CONSTANT-ROTATING SPHERE

Transverse rotation:non-dimensional parameters

$$A^* = A_y / D \tag{1}$$

$$\boldsymbol{U}^* = \boldsymbol{U}/(\boldsymbol{f_{nw}}\boldsymbol{D}) \tag{2}$$

$$m^* = m/(\pi \rho D^3/6)$$
 (3)

$$\alpha = \frac{D\omega}{2U} \tag{4}$$

(6)

Elastically mounted sphere

Top view

Experimental setup

Transverse Rotation: Shift in \bar{y} , **lower** $C'_{y_{rms}}$

Flexibly mounted rotating sphere: effect of rotation ($U^* = 6$)

 $\alpha = 0$

 $\alpha = 6$

 $\alpha = 2.5$

At higher spin rates α , wake stops oscillating

U * = 6

 $\alpha = 0$

 $\alpha = 6$

Increasing spin rate reduces vibrations

CFD: Effects of sphere rotation on VIV

ROTARY-OSCILLATING SPHERE

Rotary oscillations: non-dimensional parameters

$$A^* = A_y / D \tag{7}$$

$$U^* = U/(f_{nw}D) \tag{8}$$

$$m^* = m/(\pi \rho D^3/6)$$
 (9)

$$\alpha_R = D\dot{\theta}_{max}/2U \tag{10}$$

$$f_R = f_r / f_{nw} \tag{11}$$

Rotary oscillations: $\alpha_{\rm R} = 0.5$ for different f_R

 $f_R = 1$

Amplitude response profile similar to unforced case.

Rotary oscillations: $\alpha_{\rm R} = 2$ for different f_R

Amplitude response has additional Rotary Induced Vibration (RIV)

Rotary oscillations: Variation with $f_{\rm R}$, ç

Streamwise vorticity: more intense for larger FIV

VIV OF A ROLLING SPHERE

Observed and predicted drag coefficient

Experiment: Rig in Marseille

CFD: Spectral Element Mesh

Dye visualisation of a rolling sphere

CFD Prediction of Rolling Sphere

Predicted lateral oscillations, mean lift & drag

Lateral A_Y^* and streamwise A_X^* oscillation amplitudes vs *Re* for different mass ratios β

Mean observed drag coefficients vs Re

Summary & Conclusions

Non-rotating sphere

Surface trip wire: Effect of angle and height on FIV

Near a free surface: As sphere is raised, FIV decreases until sphere touches surface, then increases until about 3/8 submerged, then decreases

Rotating sphere

Constant rotation: Magnus effect, FIV reduction for all U* as spin rate increases

Rotary oscillation: Complex response, FIV reduction or augmentation, depending on oscillation amplitude and frequency, including galloping-like response

Rolling on a wall: FIV increases as m* decreases