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Lecture Objectives

Learn:

The importance of bluff body flows

The different instabilities and transitions in the wakes of generic bodies

Methods of predicting wake instability frequencies and wavelengths

𝜐
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Overview

• Generic bluff bodies: The sphere and 
circular cylinder
– Different bifurcation scenarios
– Different instabilities in the wake

• Conclusions
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Importance of Bluff Body Flows

Flows around buildings
www.simscale.com/blog/2018/07/
working-in-wind-engineering/

Towers of wind turbines
nautil.us/issue/37/currents/
fish-school-us-on-wind-power-rp

Flow around sports balls
www.nasa.gov/content/nasa-turns-
world-cup-into-lesson-in-aerodynamics/

Flow around humans
https://www.mr-cfd.com/portfolio-
item/airflow-around-the-human-body/

Flow offshore risers
www3.imperial.ac.uk/vortexflows/resear
ch/fluidstruct/vivofflexiblestructures

Vehicle Aerodynamics
www.monashmotorsport.com/undertray/
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The flow past spheres & circular cylinders

• Sphere:
– 0 < Re < 211: Steady axisymmetric wake
– Re = 211: Regular supercritical bifurcation 

(azimuthal mode number m = 1)
– 211 < Re < 272: Steady non-axisymmetric 

wake
– Re = 272: Supercritical Hopf bifurcation (m 

= 1)
– Re > 272: Hairpin shedding, turbulence, etc.

Attached flow (left, Re = 0.1) & separated flow (right, Re = 56.5) past 
a sphere

Photographs: M. Payard & M. Coutanceau (Van Dyke 1982)

Important parameter: Reynolds number Re = U D / 𝜐
U is flow velocity, D is body “diameter”, 𝜐 is kinematic viscosity 
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The flow past spheres & circular cylinders

• Sphere:
– 0 < Re < 211: Steady axisymmetric wake
– Re = 211: Regular supercritical bifurcation 

(azimuthal mode number m = 1)
– 211 < Re < 272: Steady non-axisymmetric 

wake
– Re = 272: Supercritical Hopf bifurcation (m 

= 1)
– Re > 272: Hairpin shedding, turbulence, etc.

Steady non-axisymmetric wake behind a sphere at Re = 250

Johnson & Patel (1999)
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The flow past spheres & circular cylinders

• Sphere:
– 0 < Re < 211: Steady axisymmetric wake
– Re = 211: Regular supercritical bifurcation 

(azimuthal mode number m = 1)
– 211 < Re < 272: Steady non-axisymmetric 

wake
– Re = 272: Supercritical Hopf bifurcation (m 

= 1)
– Re > 272: Hairpin shedding, turbulence, etc.

Computed unsteady wakes behind a sphere at Re = 300

Left: Johnson & Patel (1999), Right: Sheard et al. (JFM, 2004)
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The flow past spheres & circular cylinders

• Cylinder:
– 0 < Re < 47: Steady 2D wake
– Re = 47: Supercritical Hopf bifurcation
– 47 < Re < 180: Periodic 2D vortex street
– Re = 180: Subcritical Mode A inst. (λd ≈ 4d)
– Re > 180: 3D vortex shedding, secondary 

Mode B instability, turbulent transitions, etc.
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The flow past spheres & circular cylinders

• Cylinder:
– 0 < Re < 47: Steady 2D wake
– Re = 47: Supercritical Hopf bifurcation
– 47 < Re < 180: Periodic 2D vortex street
– Re = 180: Subcritical Mode A inst. (λd ≈ 4d)
– Re > 180: 3D vortex shedding, secondary 

Mode B instability, turbulent transitions, etc.

2D vortex street behind a 
circular cylinder at Re = 140

Photograph: S. Taneda (Van 
Dyke 1982)
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The circular cylinder is a canonical 2d bluff body

Non-rotating cylinder in a cross-flow: allée de Bénard-
von Kármán

A. Mallock, 1907: On the resistance of air. Proc. Royal Soc., A79, pp. 262–265.
H. Bénard, 1908: Comptes rendus de l'Académie des Sciences (Paris), vol. 147, pp. 839–842, 970–972.
T. von Kármán: and H. Rubach, 1912: Phys. Z., vol. 13, pp. 49–59.

Reynolds number Re = Ud/ν
Strouhal number St = fd/U

è
U

d 2d                       3d
Mallock (1907)

https://www.youtube.com/watch?v=3mULL6O6f38
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circular cylinder

Bénard-von Kármán wake
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Drag Coefficient for 2D bodies

Drag coefficient and reciprocal of Strouhal number for 
flow past a Cylinder. 
Roshko (JFM, 1961)

1953

1955

1958

1924

1921

1949 1955

2d steady
2d 

unsteady

3d unsteady
Drag 
crisis

Drag coefficient at “turbulent” Re for various 2D 
shapes.
(Sighard Hoerner's Fluid Dynamic Drag, Chapter 3)
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Drag coefficient for flow past a Sphere as a 
function of Reynolds number Re. (NASA) Drag coefficient at “turbulent” Re for various 3D 

shapes.
(Sighard Hoerner's Fluid Dynamic Drag, Chapter 3)

Drag Coefficient for 3D bodies
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Wakes and transitions for a stationary circular cylinder

Steady 2d to unsteady 2d – global frequency selection
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Circular Cylinder: 2D Instability
Different Approaches to determining stability

• Steady base flow
– Undertake non-linear stability analysis

• Time-mean velocity field
– Flow is saturated
– Undertake linear stability analysis

• Time-dependent 
field

– Flow 
perturbation

Vorticity field - cylinder wake 
Re = 100

Unstable steady wake 
Re = 100

Time-mean wake 
Re = 100

Barkley, 
Europhys. 
Lett. (2006)
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How is Wake Frequency Selected?
• Problem: Wake absolutely unstable over a finite spatial range.

– Prediction of frequency at any point in this range.
– So what is the selected frequency?

• There were three competing theories:
– Monkewitz and Nguyen (1987) proposed the Initial Resonance 

Condition
> The frequency selected corresponds to the predicted 

frequency at the point where the initial transition from 
convective to absolute instability occurs.

– Koch (1985) proposed the downstream resonance condition.
> This states that it is the downstream transition from absolute to 

convective instability that determines the selected frequency.
– Pierrehumbert (1984) proposed that the selection is determined 

by the point in the absolute instability range with the maximum 
amplification rate.

– These theories are largely ad-hoc.
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Selection of Wake Frequency - Saddle Point Criterion

• Since then
– Chomaz, Huerre, Redekopp (1991) & 

Monkewitz in various papers have shown that 
the global frequency selection for (near) parallel 
flows is determined by the complex frequency of 
the saddle point in complex space, which can 
be determined by analytic continuation from the 
behaviour on the real axis. 

– This was demonstrated by the work of 
Hammond and Redekopp (1997), who 
examined the frequency prediction for the wake 
from a square trailing edge cylinder.
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0.70

Test Case - Flow over Trailing Edge Forming a Wake
• Hammond and Redekopp (JFM 1997): use time-averaged profiles

Linear theory assumptions

Predicted 
oscillation frequency

Predicted 
growth 

rate

Frequency prediction with downstream distance
The real and imaginary components of the complex frequency 
is determined using both Orr-Sommerfeld (viscous) and 
Rayleigh (inviscid) solvers from velocity profiles across the wake.

Is the wake parallel?

Re=160

Saddle Point Criterion: Prediction of preferred 
frequency is:

Parallel inviscid theory at Re=160 gives 0.1006
Numerical simulation of (saturated) shedding at 
Re=160 gives 0.1000.

Better than 1% accuracy!
Saddle point at (xsr, xsi) = (0.79, 0.078)



23

Saddle Point Criterion
• Prediction of selected frequency:

– Find saddle point in complex plane where group velocity is zero and growth 
rate if positive

> Can use complex Taylor series + Cauchy-Riemann equations to project 
off the real axis (…the only place where you have data).  

Here, both ω0 and x are complex!

x
Real x

Saddle point

C
om

pl
ex

 x

ω0(xs) > 0
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Frequency Prediction for a Circular Cylinder Wake

• Numerical Stability Analysis based on Time-Mean Flow
– Extract velocity profiles across wake
– Analyze using parallel stability analysis to predict Strouhal

number

ExperimentsRayleigh equationDNS
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Inadequacy of Theory?

• We need to know the time-mean flow (either by numerical 
simulation or running experiments) to compute the preferred wake 
frequency!

– Not necessarily a predictive tool but gives insight to wake stability…

• Another option is to undertake a non-linear stability analysis on the 
steady base flow (when the wake is still steady - prior to shedding).

– This was done by Pier (JFM 2002).
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Non-Linear Theory
• Pier (JFM 2002) & Pier and Huerre (2001).

– Frequency selection based on the (imposed) steady cylinder 
wake using non-linear theory.

Predictions of growth rate 
as a function of Reynolds number 

for the steady cylinder wake.

Predicted wake frequency

Absolute instability
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Inviscid Assumption
• Nonlinear theory indicates that the saturated wake frequency 

corresponds to the frequency predicted from the Initial 
Resonance Criterion (IRC) of Monkewitz and Nguyen (1987) 
based on linear analysis.

DNS

Downstream A-->C transition
(Koch)

Experiments (Williamson - curve)

Elephant modes (Pier)
IRC criterion (= nonlinear prediction)

(Monkewitz and Nguyen)

From mean flow
(saddle point criterion)

Saddle point on
Steady flow

Max amplication
(Pierrehumbert)
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Global Stability Analysis
• Prediction based on Global instability analysis of time-mean wake. 

(Barkley 2006).

Match with experiments & DNS
for wake frequency 

Predicted mode is neutrally stable… 
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Saddle Point Criterion applied to Higher Re Time-Mean 
Observations

Low turbulence wind tunnel

Khor, Sheridan, Thompson & Hourigan, JFM, 
2008.
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Time-Mean Velocity Profiles & Monkewitz & Nguyen

Fit Monkewitz & Nguyen N
profiles to cylinder wake

Positive absolute growth rate ωi
0 > 0, which indicates absolute instability, for 1/N > 0.08. The 

corresponding real component of the absolute instability frequency is ωr
0 =1.68.
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Global Frequency Selection based on Time-Mean 
Experimental Wake

Calculate Frequency Selection using 
Saddle Point Criterion

Determine real and imaginary
frequencies from stability of each 
1/N curve as a function of 
wake position
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When can the Time-Mean Wake be used for 
Global Frequency Selection?
• Sipp and Lebedev, JFM, 2007.

– Two cases: circular cylinder wake and flow over a cavity

– Two conditions, involving parameters related to the nonlinear 
interactions in the wake, need to be satisfied:

> (a) for the time-mean flow to be approximately marginally 
stable, and 

> (b) for the stability of the time-mean flow approximately to 
yield the nonlinear frequency of the limit cycle. 

– The physical meaning of these two conditions is that the 
saturation process on the limit cycle is linked to the mean flow 
harmonic.

– The circular cylinder satisfies these, the cavity flow does not.
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Shear layer and large-scale vortices
Kourta et al., JFM, 1987.

Strong coupling at low Reynolds numbers characterized by phase modulations 
between the two types of structures; shear layer and large-scale. 
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2d shear layer instability appears at Re ≈1200

N. Saelim and D. Rockwell, private 
comm. (2004)Thompson & Hourigan, PoF, 2005 

• Bloor-Gerrard instability persists to high Re

• Global variation of fSL/fBvK ≈ Re0.69

• Within each step, fSL/fBvK ≈ Re0.5, as predicted by 
Bloor (1964) based on separating BL
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Instabilities form in the far wake

h / a = 0.31 h / a = 0.41
Evolution of vortex street composed of point vortices

Karasudani and Funakoshi (1994)

Taneda (1959)
Cimbala, Nagib and Roshko (1988)
Williamson and Prasad (1993)

Johnson et al. (2004)
Radi et al. (2013)
Thompson et al. (2014)
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Linear Stability Analysis: Floquet



37Floquet Analysis of wake of circular cylinder

Spanwise wavenumber 𝛃 = 2𝛑D/𝛌
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Barkley & Henderson, JFM (322), 1996.
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Spanwise wavenumber 𝛃 = 2𝛑D/𝛌
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Conclusions

• There can be a number of transitions in the wakes of bluff bodies, including:
Flow separation
Separating shear layer instability
Large-scale vortex shedding
Three-dimensional vortex formation
Wake relaminarization and secondary wake

• Various techniques for investigating wake instabilities:
• Linear:  

• Rayleigh/Orr Sommerfeld
• Saddle point 
• Floquet

• Nonlinear

• All involve assumptions – need to be careful in interpretation


