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Lecture Objectives

Learn:

The importance of bluff body flows

The different instabilities and transitions in the wakes of generic bodies

Methods of predicting wake instability frequencies and wavelengths
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Overview

* Generic bluff bodies: The sphere and
circular cylinder

— Different bifurcation scenarios
— Different instabilities in the wake

e Conclusions



Importance of Bluff Body Flows

.

Flows around buildings
www.simscale.com/blog/2018/07/
working-in-wind-engineering/

Flow around humans
https://www.mr-cfd.com/portfolio-
item/airflow-around-the-human-body/

Towers of wind turbines Flow around sports balls
nautil.us/issue/37/currents/ www.nasa.gov/content/nasa-turns-
fish-school-us-on-wind-power-rp world-cup-into-lesson-in-aerodynamics/

Flow offshore risers Vehicle Aerodynamics
wwwa3.imperial.ac.uk/vortexflows/resear www.monashmotorsport.com/undertray/
ch/fluidstruct/vivofflexiblestructures



The flow past spheres & circular cylinders

Important parameter: Reynolds number Re = U D /v
U is flow velocity, D is body “diameter”, v is kinematic viscosity

Attached flow (left, Re = 0.1) & separated flow (right, Re = 56.5) past
a sphere

Photographs: M. Payard & M. Coutanceau (Van Dyke 1982)
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The flow past spheres & circular cylinders

* Sphere:
— 0 < Re < 211: Steady axisymmetric wake

— Re = 211: Regqular supercritical bifurcation
(azimuthal mode number m = 1)

— 211 < Re < 272: Steady non-axisymmetric
wake

— Re = 272: Supercritical Hopf bifurcation (m
= 1)
— Re > 272: Hairpin shedding, turbulence, etc.



The flow past spheres & circular cylinders

* Sphere:

Steady non-axisymmetric wake behind a sphere at Re = 250
Johnson & Patel (1999)

— Re > 272: Hairpin shedding, turbulence, efc.



The flow past spheres & circular cylinders

* Sphere:
— 0 < Re < 211: Steady axisymmetric wake

— Re = 211: Regular supercritical bifurcation
(azimuthal mode number m = 1)

— 211 < Re < 272: Steady non-axisymmetric
wake

— Re = 272: Supercritical Hopf bifurcation (m
= 1)
— Re > 272: Hairpin shedding, turbulence, etc.



The flow past spheres & circular cylinders

* Sphere:

N DA & 211

LD III'\

Computed unsteady wakes behind a sphere at Re = 300
Left: Johnson & Patel (1999), Right: Sheard et al. (JFM, 2004)

— Re > 272: Hairpin shedding, turbulence, etc.
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The flow past spheres & circular cylinders

* Cylinder:
— 0 < Re <47: Steady 2D wake
— Re = 47: Supercritical Hopf bifurcation
— 47 < Re < 180: Periodic 2D vortex street
— Re = 180: Subcritical Mode A inst. (A; = 4d)

— Re > 180: 3D vortex shedding, secondary
Mode B instability, turbulent transitions, etc.
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The flow past spheres & circular cylinders

* Cylinder:
— 0 < Re <47: Steady 2D wake
— Re = 47: Supercritical Hopf bifurcation
— 47 < Re < 180: Periodic 2D vortex street
— Re = 180: Subcritical Mode A inst. (A; = 4d)

— Re > 180: 3D vortex shedding, secondary
Mode B instability, turbulent transitions, etc.
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The flow past spheres & circular cylinders

* Cylinder:

A =2 N1 1 LN

2D vortex street behind a
circular cylinder at Re = 140 B "~
Y )i

Photograph: S. Taneda (Van
Dyke 1982)




14

The circular cylinder is a canonical 2d bluff body

Non-rotating cylinder in a cross-flow: allée de Bénard-
von Karman

Reynolds number Re = Ud/v
Strouhal number St = fd/U

5 [Or ) » Yo " & 2 3¢

Mallock (1907)

https://www.youtube.com/watch?v=3mULL606f38

A. Mallock, 1907: On the resistance of air. Proc. Royal Soc., A79, pp. 262—-265.
H. Bénard, 1908: Comptes rendus de I'Académie des Sciences (Paris), vol. 147, pp. 839-842, 970-972.
T. von Karman: and H. Rubach, 1912: Phys. Z., vol. 13, pp. 49-509.



Summary of large-scale transitions for a
circular cylinder

%%/_. Re < § REGIME OF UNSEPARATED FLOW Rd =5

—/“\@‘\/}7 BIHSm<i A 5-15 <R, < 40

<O\ [\ [ HEm d0<r <1
e 0

0 Bénard-von Karman wake
150 <Ry <300

QT Mcewvonre T Transition to turbulence
U 300 < Re = 3X10° VORTEX STREET IS FULLY

TURBULENT 300 & Rd < 3*105

/\‘*N 3X105 Z Re < 35X 108
—»@g}_ L o e 34105 < R, <3:5%108
\/.._. NARROWER AND DISORGANIZED

35X 10° < Re

0 T RE-ESTABLISHMENT OF TURBU- 3.5%] 06 < Rd

0 LENT VORTEX STREET

Fig. 3-2 Regimes of fluid flow across smooth circular cylinders (Lienhard, 1966).
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Drag Coefficient for 2D bodies
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Drag Coefficient for 3D bodies

Cd ——— Smooth ",
- -——— Rough < |-— ©) o042
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Drag coefficient for flow past a Sphere as a

function of Reynolds number Re. (NASA) Drag coefficient at “turbulent” Re for various 3D
shapes.
(Sighard Hoerner's Fluid Dynamic Drag, Chapter 3)




Wakes and transitions for a stationary circular cylinder

Steady 2d to unsteady 2d - global frequency selection
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Circular Cylinder: 2D Instability

Different Approaches to determining stability

« Steady base flow
— Undertake non-linear stability analysis

 Time-mean velocity field
— Flow is saturated Barkley,

— Undertake linear stability analysis Europhys.
Lett. (2006)

« Time-dependent

field Vorticity field - cylinder wake

Re =100

— Flow
perturbation

Unstable steady wake
Re =100

Time-mean wake
Re =100
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How is Wake Frequency Selected?

 Problem: Wake absolutely unstable over a finite spatial range.
— Prediction of frequency at any point in this range.
— So what is the selected frequency?

 There were three competing theories:

— Monkewitz and Nguyen (1987) proposed the /nitial Resonance
Condition

> The frequency selected corresponds to the predicted
frequency at the point where the initial transition from
convective to absolute instability occurs.

— Koch (1985) proposed the downstream resonance condition.

> This states that it is the downstream transition from absolute to
convective instability that determines the selected frequency.

— Pierrehumbert (1984) proposed that the selection is determined
by the point in the absolute instability range with the maximum
amplification rate.

— These theories are largely ad-hoc.




Selection of Wake Frequency - Saddle Point Criterion

 Since then

— Chomaz, Huerre, Redekopp (1991) &
Monkewitz in various papers have shown that
the global frequency selection for (near) parallel
flows is determined by the complex frequency of
the saddle point in complex space, which can
be determined by analytic continuation from the
behaviour on the real axis.

— This was demonstrated by the work of
Hammond and Redekopp (1997), who
examined the frequency prediction for the wake
from a square trailing edge cylinder.
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Test Case - Flow over Trailing Edge Forming a Wake

« Hammond and Redekopp (JFM 1997): use time-averaged profiles

Vi
T U Linear theory assumptions
0 I )
1 U, tb ------------------------ -X Is the wake parallel?
52l —
UZ
- [ ————> FIGURE 4. A measure of the non-parallel nature of the spatially developing wake at Re = 160.
Re=160
Frequency prediction with downstream dis1'<:mc<aI
The real and imaginary components of the complex frequency
is determined using both Orr-Sommerfeld (viscous) and
Rayleigh (inviscid) solvers from velocity profiles across the wake.
oorp (@
w, | | Predicted
0.6 loscillation frequency
Saddle Point Criterion: Prediction of preferred 1
frequency is: L R
(b) I I o
Parallel inviscid theory at Re=160 gives 0.1006 oot Predicted
Numerical simulation of (saturated) shedding at “o, 005 | growth
Re=160 gives 0.1000. : rate

Better than 1% accuracy! Coos A
Saddle point at (X, Xg) = (0.79, 0.078) ' < ’

FIGURE 5. (a) The absolute frequency and (b) the absolute growth rate for the wake at Re = 160.
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Saddle Point Criterion

* Prediction of selected frequency:

— Find saddle point in complex plane where group velocity is zero and growth
rate if positive

¢ on

0x

— 0 wO(Xs) >0

X=Xy

Here, both w, and x are complex!

> Can use complex Taylor series + Cauchy-Riemann equations to project
off the real axis (...the only place where you have data).

¢ M,

wo,(Xs) = @0, (X, X; = 0) — — xi +O0(x;7),
OXr | =0
A, x
S , . cw ;9 .
wo,(Xs) = @0, (X, X; = 0) + — __0’ Xi + 0(x7). o} Sadde point
OXr =0 § /X\\
, £ N >

/ \ Real x
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Frequency Prediction for a Circular Cylinder Wake

Numerical Stability Analysis based on Time-Mean Flow
— Extract velocity profiles across wake

— Analyze using parallel stability analysis to predict Strouhal
number l

Re Stpns Stclob | StRay |Tsaddle,Ray StMN

Stmnr | Stwr

Two-dimensional wake

100 0.1659 | 0.1639 | 0.1644 | 1.34  0.171% 0.1647
200 0.1970 | 0.1945 | 0.1972 | 1.05  0.194% 0.1945
DNS Rayleigh equation Experiments

Re =100, 2D Re =200, 2D
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Inadequacy of Theory?

 We need to know the time-mean flow (either by numerical
simulation or running experiments) to compute the preferred wake
frequency!

— Not necessarily a predictive tool but gives insight to wake stabillity...

« Another option is to undertake a non-linear stability analysis on the
steady base flow (when the wake is still steady - prior to shedding).

— This was done by Pier (JFM 2002).



Non-Linear Theory
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* Pier (JFM 2002) & Pier and Huerre (2001).
— Frequency selection based on the (imposed) steady cylinder

wake using non-linear theory.

Absolute instability

o0, 0;1 (a)
5B\

e ——— =, 2000
= = |50

= |00

— 50
—

20

Predictions of growth rate
as a function of Reynolds numbel
for the steady cylinder wake.

Predicted wake frequency



Frequency Predictions based on Near-Parallel,
Inviscid Assumption

Nonlinear theory indicates that the saturated wake frequency
corresponds to the frequency predicted from the Initial
Resonance Criterion (IRC) of Monkewitz and Nguyen (1987)
based on /inear analysis.

0.84

0.6-

Elephant modes (Pier)

IRC criterion (= nonlinear prediction)

(Monkewitz, and Nguyen) DNS
o o

St
=]
A - Experiments (Williamson - curve)
018l & ik
T o op vt —
el e . From mean flow
Y (saddle point criterion)
0.14 -
. e e s o o o o o s se—Downstream A-->C transition
SR ELE L E ¥ PN (Koch)
0.10. ‘QNM licati
% e o ax amplication
s 50 75 100 125 150 1% 26N(Plerrehumbert)

Re

Saddle point on

FIGURE 6. Reynolds number dependence of cylinder wake characteristic frequencies. Vortex shedding Steady flow
frequencies of the present simulations (open squares) closely follow the experimental Strouhal

number curve from Williamson (1988) (solid line). Theoretical elephant frequencies wg® (filled

squares) approximately predict the actual vortex shedding frequencies for Re > 100. The other

characteristic frequencies w§’ (grey circles), g™ (open circles) and w?, (filled circles) are unable to

account for the fully developed vortex street beyond onset at Re ~ 49. Note the good performance

of rT){, based on the mean flow (diamonds).
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Global Stability Analysis

« Prediction based on Global instability analysis of time-mean wake.
(Barkley 2006).

frequency

Match with experiments & DNS
for wake frequency

0.2 T

o
=
o

01 L

St

11111

|||||

4 (a)

180

o
0

1(b)

o
_

growth rate
o

I
o
-

Predicted mode is neutrally stable...



Saddle Point Criterion applied to Higher Re Time-Mean
Observations

Low turbulence wind tunnel
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Time-Mean Velocity Profiles & Monkewitz & Nguyen
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FIGURE 2. The (a) real and (b) imaginary parts of the branch point frequency of the dis-
persion relation for the velocity profile (2.1) with R =—1, as a function of N~!. After MN.

Positive absolute growth rate w,° > 0, which indicates absolute instability, for 1/N > 0.08. The
corresponding real component of the absolute instability frequency is w,° =1.68.



Global Frequency Selection based on Time-Mean
Experimental Wake

0.3
025 §-== Determine real and imaginary
02 | frequencies from stability of each
o 015 1/N curve as a function of
5 oi wake position
0.05
0
0.05 L L 1 1 1
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x/D
0.25 T T T
0.2 4
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When can the Time-Mean Wake be used for

Global Frequency Selection? 0" |
- Sipp and Lebedev, JFM, 2007. / °

— Two cases: circular cylinder wake and flow over a cavity

— Two conditions, involving parameters related to the nonlinear
interactions in the wake, need to be satisfied:

> (a) for the time-mean flow to be approximately marginally
stable, and

> (b) for the stability of the time-mean flow approximately to
yield the nonlinear frequency of the limit cycle.

— The physical meaning of these two conditions is that the
saturation process on the limit cycle is linked to the mean flow
harmonic.

— The circular cylinder satisfies these, the cavity flow does not.



Shear layer and large-scale vortices
Kourta et al., JFM, 1987.

R=2150 C=1000 i/s R=2400 C=2000 i/s R=3400 C=4000 i/s

R=4800 C=2000 i/s R=4800 C=4000 i/s R=6400 C=4000 i/s
FIGURE 2. Flow visualizations at low Reynolds numbers: R=U,D/v; C=camera speed in images per s.

FIGURE 5. Flow visualizations at high Reynolds numbers: R=20 000; C=2000 i/s.

Strong coupling at low Reynolds numbers characterized by phase modulations
between the two types of structures; shear layer and large-scale.



2d shear layer instability appears at Re =1200

()” + Bloor-Gerrard instability persists to high Re
" " oo « Global variation of fg /fz,« = Re%?
| « Within each step, fg /fg,x = Re®, as predicted by
Bloor (1964) based on separating BL
L - J

o 'OF

falfe |
B 0.116 Re¥-52
<"

10 |

R - B
[ 0.052Re 57 &~
/ © Prasad & Wiliamson (1997)

o Norberg (1987)

1

e | |
Reynolds number N. Saelim and D. Rockwell, private

Thompson & Hourigan, PoF, 2005 comm. (2004)
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Instabilities form in the far wake

Taneda (1959)
Cimbala, Nagib and Roshko (1988)
Williamson and Prasad (1993)

Johnson et al. (2004)
Re=200, Ar=1.00 Radi et al. (2013)
Thompson et al. (2014)

LA —_——

Re=200, Ar=0.75

t=0[s] £=18[s] £=37(s) £=55(s] e £=19[s] £2370s)

h/a=0.31 h/a=0.41
Evolution of vortex street composed of point vortices

Karasudani and Funakoshi (1994)
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Linear Stability Analysis: Floquet

Floquet analysis is a linear stability analysis that considers the growth rate of perturbations on the 2D base
flow.

Let U(z,y,t) be the 2D wake (base flow) of period T, and u/(z,y,t) be an infinitesimal 3D perturbation to
this base flow that evolves according to the linearised Navier-Stokes equations in the computational domain €2:

ou’ 1 1
5;; = —DN’LL, - ;vp/ + EVQ ! :L (ul) 111 Q,
V-u'=0in Q,

where p’ is the perturbation to pressure and DNu' is the linearised advection term:
DNu' = (v -V)U + (U -V)u'.

The perturbed flow U + u’ satisfies the same boundary conditions as the base flow. The operator L (u’) in
/

YL (u”) is T-periodic and is of the Floquet type.

the equation

Solutions of this equation can be decomposed in to a sum of solutions of the form: w(x,y,t)exp(ot). The
complex numbers o are the Floquet exponents, but often the Floquet multipliers y = exp(oT') are used.
Multipliers outside the unit circle (|u|) > 1) correspond to exponentially growing solutions (Re o > 0).
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Floquet Analysis of wake of circular cylinder
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Barkley & Henderson, JFM (322), 1996.
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Conclusions

There can be a number of transitions in the wakes of bluff bodies, including:
Flow separation
Separating shear layer instability
Large-scale vortex shedding
Three-dimensional vortex formation
Wake relaminarization and secondary wake

Various techniques for investigating wake instabilities:
* Linear:
+ Rayleigh/Orr Sommerfeld
« Saddle point
* Floquet

* Nonlinear

All involve assumptions — need to be careful in interpretation



