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Vorticity in two dimensions

! =
@v

@x
� @u

@y
:

Navier-Stokes equation

Dv

Dt
= �1

�
rp + �∆v;

D

Dt
=

@

@t
+ v � r:

Take the curl — vorticity transport equation

D!

Dt
= �∆!

Ideal fluids (� = 0)
Vorticity is frozen in the fluid.
A Point vortex of circulation Γ centered at x0, ! = Γ=(2�)�(x� x0)
induces a velocity field

v =
Γ

2�

x̂� x0

jx� x0j2
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Ideal fluids cont.

N point vortices placed at x�; � = 1; : : : ;N induce a velocity field

v =
NX

�=1

Γ�
2�

x̂� x�
jx� x�j2

Each vortex is a material point and moves in the velocity field from the
other vortices

dx�
dt

=
NX

�=1
�6=�

Γ�
2�

̂x� � x�
jx� � x�j2 ; � = 1; : : : ;N:
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Point vortices successfully used to model cylinder wakes (von Kármán,
1912)

How to generalize to real viscous flows where vorticity diffuses, D!
Dt = �∆!
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Vortex definition #2

A vortex is a region of concentrated vorticity.

Vorticity is Galilean invariant.
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Generalizing point vortices

A feature point of a vortex is a local extremum of vorticity,

@x! = @y! = 0;

det(H) > 0; H =

 
@xx! @xy!
@xy! @yy!

!
:

If det(H) < 0, the critical point of ! is a saddle.

Iso-curves of ! near a critical point
det(H) > 0 det(H) < 0
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Motion of critical points of vorticity (extrema and saddles)

A critical point (x(t);y(t)) of vorticity fulfills

@x!(x(t);y(t);t) = 0; @y!(x(t);y(t);t) = 0

Implicit differentiation yields equations of motion

 
ẋ
ẏ

!
= �H�1

 
@xt!
@yt!

!
=

0BBB@
@xy!@yt! � @yy!@xt!

det(H)

@xy!@xt! � @xx!@yt!

det(H)

1CCCA

Vortices are created or destroyed when det(H) = 0
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Cusp or saddle-center bifurcation of vortices

Theorem Assume the Hessian H has zero as a simple eigenvalue at a
critical point at (x ;y ;t) = (0;0;0), and choose the coordinate system such
that

H(0;0;0) = H0 =

 
0 0
0 @yy!0

!
Assume the non-degeneracy conditions

A = @yy!0 6= 0; B = @xt!0 6= 0; C = @xxx!0 6= 0:

Then there are critical points of vorticity given by

x(t) = �
s
�2B

C
t +O(t); y(t) =

�
� 1

A
@yt!0 +

B

AC
@xxy!0

�
t +O(t3=2)

If B=C > 0 the two critical points exist for t < 0 and merge and disappear
at the origin at t = 0. If B=C < 0 the points are created at t = 0 and
exist for t > 0. In both cases, one of the critical points is a saddle, the
other is an extremum.
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Cusp bifurcation example

! = t(y � x) + y2 � 1

3
x3; @x! = �t � x2; @y! = t + 2y :

Critical points

x = �p�t; y = �1

2
t:

Easy to check that the assumptions of the theorem are fulfilled at
(x ;y ;t) = (0;0;0).
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Wake of cylinder close to wall

Rasmus Ellebæk Christiansen, Master’s Thesis, 2013.
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The role of the vorticity transport equation

@t! + (v � r)! = �∆!

In the regular case, the equations of motion for the critical points of
vorticity become

ẋ = u � �
@yy!∆@x! � @xy!∆@y!

det(H)

ẏ = v � �
@xx!∆@y! � @xy!∆@x!

det(H)

For the cusp bifurcation we get

B = @xt!0 = �∆@x!0;
x(t)2

�t
= �2

�
1 +

@xyy!0

C

�
+O(t)

y(t) =

�
v + �

@xxy!0@xyy!0 � @xxx!0@yyy!0

A

�
t +O(t2)
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The onset of vortex dynamics in the cylinder wake

U

D

�

Flow is steady and symmetric at modest Reynolds numbers.

Steady flow becomes unstable at

Recrit =
UcritD

�
� 46

via a symmetry-breaking, super-critical Hopf-bifurcation.

Instability leads to formation of “Karman vortex street” via periodic
shedding of vortices with a characteristic frequency.
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Vorticity field pre- and post-Hopf bifurcation

Before Hopf bifurcation: Vorticity is generated on no-slip
boundaries and then advected downstream; diffusion spreads out the
profile as x !1. Flow is symmetric about y = 0.

“Carpet plot” of vorticity, z = !(x ;y), above logarithmic colour contours of j!(x ;y)j.
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Vorticity field pre- and post-Hopf bifurcation

After Hopf bifurcation: Time-periodic, asymmetric flow. Vorticity
field is advected downstream [Karman vortex street].

“Carpet plot” of vorticity, z = !(x ;y ;t), above logarithmic colour contours of j!(x ;y ;t)j.
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Fluid dynamics near the Hopf bifurcation

Difficult to simulate close to bifurcation due to long transients

Theory: Flow close to the Hopf bifurcation is well approximated by

v(x ;y ;t;Re) � v(x ;y ;Recrit) + " bv(x ;y) e iΩt

where

v(x ;y ;Recrit) is the steady flow at the Hopf bifurcationbv(x ;y) is a critical eigenfunction of the linearized problem at the Hopf
bifurcation

i
 is the corresponding critical eigenvalue

" � (Re �Recrit)
1=2 is a proxy for the excess Reynolds number (above

the critical value).
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How (and where) are the extrema in the vorticity generated?

Logarithmic colour contours of j!(x ;y ;t)j.
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How (and where) are the extrema in the vorticity generated?

�
�

�
�

Cusp bifurcation: saddle and extremum

appear “out of nowhere”.

Logarithmic colour contours of j!(x ;y ;t)j.
Iso-lines of !(x ;y ;t) (black lines).

Level curve @!=@x = 0 (blue lines).

Level curve @!=@y = 0 (cyan lines).
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Location/existence of cusp bifurcation as function of "

Plot of zero levels of @!=@x (red), @!=@y (blue) at time when vortex is
created. Location of bifurcation indicated by green marker.

""" = 0:041
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Location/existence of cusp bifurcation as function of "
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Location/existence of cusp bifurcation as function of "

Plot of zero levels of @!=@x (red), @!=@y (blue) at time when vortex is
created. Location of bifurcation indicated by green marker.

""" = 0:012

Cusp doesn’t seem to disappear – it just moves downstream as " is
reduced!
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Cusp bifurcation “disappears to” infinity as "! 0 ??

Plot of cusp position, XMin("):

1

2

Observation:
XMin � "�1=2
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Well, not quite...

XMin

No vortices are created when " < 0:00057

For " = 0:00057 a vortex is created at XMin = 117:1
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So, here’s what really happens

Karman vortex street develops at finite ".

Cusp bifurcation first appears far downstream of cylinder...
...and then moves rapidly upstream as " is increased.
Karman vortex street persists for finite length and then disappears via a
reverse cusp bifurcation when diffusion of vorticity smoothes out the local
maxima.
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Vortex definition # 3:The Q-criterion

The velocity gradient tensor can be decomposed into a symmetric and a
skew-symmetric part

rv =

 
@xu @yu
@xv @yv

!
= S + Ω;

S =
1

2
(rv +rvT ) =

1

2

 
2@xu @xv + @yu

@xv + @yu 2@yv

!
;

Ω =
1

2
(rv �rvT ) =

1

2

 
0 !
�! 0

!
:

The Q-criterion: A vortex is a region where rotation dominates shear,

Q = jjΩjj2 � jjSjj2 > 0; jjAjj2 = tr(AAT ):

Q = det(rv) = @xu@yv � @yu@xv :

Galilean invariant!
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Bifurcation of Q-vortices

Bifurcation occurs at critical points of Q, @xQ = @yQ = 0.
If the Hessian of Q is positive or negative definite, and @tQ 6= 0, a
punching bifurcation occurs

If the Hessian of Q is indefinite, and @tQ 6= 0, a pinching bifurcation
occurs
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Bifurcation of Q-vortices from a no-slip wall

Wall punching

Wall pinching
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Q-vortices in boundary layer eruption
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Connection between vorticity and Q

There is no simple general connection between critical points of vorticity
and Q-vortices. However:

If the flow has rotational symmetry around an extremum of vorticity, there
is a Q-vortex around that point.
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Summary

Local extrema of vorticity are a useful generalization of point vortices
for viscous flows

Equations of motion and a bifurcation theory describing creation and
merging of vortices can be derived

The vortices in the Karman vortex street are created at a Reynolds
number slightly higher than the critical value for onset of oscillations,
at a distance � 100 diameters downstream

The Q-criterion identifies a vortex as a region where vorticity
dominates shear

A bifurcation theory for Q-vortices can be derived
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